
GenerOS: An Asymmetric
Operating System Kernel for
Multi-core Systems

Authors:
Qingbo Yuan, Jianbo Zhao, Mingyu Chen, Ninghui Sun
Institute of Computing Technology
Chinese Academy of Sciences
yuanbor@ncic.ac.cn

Speaker:
SuZhen Wu
Huazhong University of Science & Technology

IPDPS 2010 @ Atlanta

Outline

GenerOS | 2

Motivation1

Conclusion5

Implementation of GenerOS3

Architecture of GenerOS2

Evaluation of GenerOS vs Linux4

Motivation

Symmetric multithread operating system such as Linux
suffers from lock contention and cache pollution

Lock contention
 As more cores are packaged into a single chip, there are two many

cores in a system
 Each core has the ability to trap into kernel
 Too many procedures in kernel -> serious lock contention

Cache pollution
 Applications and kernel run on the same core
 Applications may kick kernel’s cache line out of cache
 And vice versa

GenerOS | 3

Motivation
---- Lock Contention @ Linux

Contention Probability = contentions / acquisitions
 acquisitions: times acquiring lock
 contentions: times encountering contention

Contention Efficiency = hold time / (hold time + wait time)
 hold time: time in critical region
 wait time: time waiting for entering critical region

GenerOS | 4

Motivation
---- Lock Contention @ Linux

GenerOS | 5

0.00%

0.02%

0.04%

0.06%

0.08%

0.10%

0.12%

0.14%

0.16%

0.18%

1 4 16 64 256 1024

Thread Number

Contention Probability

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 4 16 64 256 1024

Thread Number

Contention Efficiency

Motivation
---- Cache Pollution @ Linux

GenerOS | 6

60%

42%

96%
92%

0%

20%

40%

60%

80%

100%

Dcache
Miss Ratio

Icache
Miss Ratio

Dcache
Lines Evicted

Icache
Lines Evicted

Ke
rn

el
 P

ro
po

rt
io

n

Motivation

GenerOS | 7

Lock Contention Solution

GenerOSMore Cores
More Contentions

Decrease Cores
in Kernel Mode

Cache Pollution Solution

Applications
Run Together
with OS

Separate Kernel
and Applications

Outline

GenerOS | 8

Motivation1

Conclusion5

Implementation of GenerOS3

Architecture of GenerOS2

Evaluation of GenerOS vs Linux4

Architecture

In a symmetric multiprocessing system, Linux treats all cores
as an equal which causes a lot of problems

By contrast, GenerOS partitions processing cores into
application core, kernel core and interrupt core
 All of applications run on application core
 Their system calls are executed by kernel core
 Interrupts are all bound to interrupt core

GenerOS | 9

Architecture

Most of cores are used by applications

A limited number of cores are used by kernel service
 File System
 Process

Few number of cores are used to handle interrupt

GenerOS | 10

Outline

GenerOS | 11

Motivation1

Conclusion5

Implementation of GenerOS3

Architecture of GenerOS2

Evaluation of GenerOS vs Linux4

Implementation

GenerOS is developed based on Linux-2.6.25 @ x86_64 architecture
In system call level, several kernel servers are developed
 File system server (98 system calls)

sys_open / sys_close / sys_read / sys_write
 Network server (15 system calls)

sys_socket / sys_connect
 Signal server (12 system calls)

sys_rt_sigaction
 IPC server (12 system calls)

sys_msgget
 Process server (10 system calls)

sys_fork
 Others (141 system calls)

sys_brk

GenerOS | 12

Implementation
---- GenerOS Processing Flow Chart

GenerOS | 13

int main(void)
{
 pid_t getpid();

 return 0;
}

Application @
Application core

pid_t generos_sys_getpid(void)
{
 req = generos_get_request();
 generos_init_request(req);
 generos_send_to_kernel(req);
 sleep();
 return pid;
}

Runtime @ Application core

while(generos_request_queue_is_not_empty(&process_queue)){
 req = generos_pick_request(&process_queue);
 switch(req->type){
 case GETPID:
 req->retvalue = sys_getpid();
 break;
 ……
 }
 wake_up_process(req->task);
}

Process Server @ Kernel core

Implementation
---- Runtime at Application Core

GenerOS | 14

It replaces the system call table of Linux
const sys_call_ptr_t syscall_table [__NR_syscall_max+1] = {

[__NR_read] = &generos_sys_read,

[__NR_write] = &generos_sys_write,

……

[__NR_timerfd_gettime] = &generos_sys_timerfd_gettime;
};

The left side keeps the same meaning with Linux which
makes GenerOS compatible with Linux

The right side uses self defined function which will find a
kernel core to handle its system call

Implementation
---- Kernel Core

GenerOS | 15

Two queues
 Request queue

Receive system call requests from application core
 Wait queue

Store the being handled system calls which are waiting for
something

One schedule method
 Slim Schedule

Schedule system calls in this kernel core with almost zero overhead

Implementation
---- Binding Interrupt Handler

GenerOS | 16

Interrupt core is used to deal with most of interrupts from
network interface, disk, or local timer

In such way, both of application core and kernel core will
have a clean execution environment

GenerOS uses the method in Linux to bind interrupt handler
to some processing core

Outline

GenerOS | 17

Motivation1

Conclusion5

Implementation of GenerOS3

Architecture of GenerOS2

Evaluation of GenerOS vs Linux4

Evaluation
---- Platform

GenerOS | 18

Evaluation
---- Lock contention

GenerOS | 19

0.00%

0.02%

0.04%

0.06%

0.08%

0.10%

0.12%

0.14%

0.16%

0.18%

1 4 16 64 256 1024

Co
nt

en
ti

on
 P

ro
ba

bi
lit

y

Thread Numbers

linux generos

0%

20%

40%

60%

80%

100%

1 4 16 64 256 1024

Co
nt

en
ti

on
 E

ff
ic

ie
nc

y

Thread Numbers

linux generos

Evaluation
---- Cache Pollution

GenerOS | 20

60%

42%

96%
92%

44%

37%

92%

83%

0%

20%

40%

60%

80%

100%

Dcache
Miss Ratio

Icache
Miss Ratio

Dcache
Lines Evicted

Icache
Lines Evicted

Ke
rn

el
 P

ro
po

rt
io

n

linux generos

Evaluation
---- Single System Call

GenerOS | 21

Evaluation
---- Single System Call

GenerOS | 22

0

5

10

15

20

25

30

35

40

45

50

open close

ki
lo

-c
yc

le
s

l-enter l-handle l-exit flyin flyout

g-enter g-flyin g-handle g-flyout g-exit

0

5

10

15

20

25

read write

m
ill

io
n-

cy
cl

es

l-enter l-handle l-exit flyin flyout

g-enter g-flyin g-handle g-flyout g-exit

Evaluation
---- TPC-H 1GB Power

GenerOS | 23

511 522

559

611

450

554

517

455

0

100

200

300

400

500

600

700

Linux g-8000 g-8800 g-8880 g-8888 g-c000 g-e000 g-f000

TP
C-

H
 P

ow
er

@
1G

Th
e

bi
gg

er
 th

e
be

tt
er

Evaluation
---- TPC-H 1GB Power

GenerOS | 24

Evaluation
---- Httperf

GenerOS | 25

0

50

100

150

200

250

300

350

400

450

200 400 600 800 1000

Re
pl

ie
s

Pe
r

Se
co

nd
th

e
m

or
e

th
e

be
tt

er

Requests Per Second

linux g-8000-8000 g-8000-800

Outline

GenerOS | 26

Motivation1

Conclusion5

Implementation of GenerOS3

Architecture of GenerOS2

Evaluation of GenerOS vs Linux4

Conclusion

GenerOS is an asymmetric kernel which is designed to deal
with the problems faced in traditional symmetric kernel

Being compatible with Linux, GenerOS does not need to
modify, recompile, or relink applications, or libraries

Experiments with two typical workloads on 16-core AMD
machine show that GenerOS behaves better than original
Linux kernel when there are more processing cores
 19.6% for TPC-H using oracle database management system
 42.8% for httperf using apache web server

GenerOS | 27

GenerOS | 28

Thank you very much!

Any question ?

Please contact the author

yuanbor@ncic.ac.cn

	GenerOS: An Asymmetric Operating System Kernel for Multi-core Systems
	Outline
	Motivation
	Motivation �---- Lock Contention @ Linux
	Motivation �---- Lock Contention @ Linux
	Motivation �---- Cache Pollution @ Linux
	Motivation �
	Outline
	Architecture
	Architecture
	Outline
	Implementation
	Implementation�---- GenerOS Processing Flow Chart
	Implementation�---- Runtime at Application Core
	Implementation�---- Kernel Core
	Implementation�---- Binding Interrupt Handler
	Outline
	Evaluation�---- Platform
	Evaluation�---- Lock contention
	Evaluation�---- Cache Pollution
	Evaluation�---- Single System Call
	Evaluation�---- Single System Call
	Evaluation�---- TPC-H 1GB Power
	Evaluation�---- TPC-H 1GB Power
	Evaluation�---- Httperf
	Outline
	Conclusion
	幻灯片编号 28

