IPDPS 2010 @ Atlanta

GenerOS: An Asymmetric Operating System Kernel for Multi-core Systems

Authors:

Qingbo Yuan, Jianbo Zhao, Mingyu Chen, Ninghui Sun Institute of Computing Technology Chinese Academy of Sciences yuanbor@ncic.ac.cn

> Speaker: SuZhen Wu Huazhong University of Science & Technology

1	Motivation
	Architecture of GenerOS
	Implementation of GenerOS
	Evaluation of GenerOS vs Linux
	Conclusion

Motivation

- Symmetric multithread operating system such as Linux suffers from lock contention and cache pollution
- Lock contention
 - As more cores are packaged into a single chip, there are two many cores in a system
 - Each core has the ability to trap into kernel
 - Too many procedures in kernel -> serious lock contention
- Cache pollution
 - Applications and kernel run on the same core
 - Applications may kick kernel's cache line out of cache
 - And vice versa

Motivation ---- Lock Contention @ Linux

Contention Probability = contentions / acquisitions

- acquisitions: times acquiring lock
- contentions: times encountering contention

• **Contention Efficiency** = hold time / (hold time + wait time)

- hold time: time in critical region
- wait time: time waiting for entering critical region

Motivation ---- Lock Contention @ Linux

Contention Probability

Motivation ---- Cache Pollution @ Linux

Motivation

	Motivation
2	Architecture of GenerOS
	Implementation of GenerOS
	Evaluation of GenerOS vs Linux
	Conclusion

Architecture

- In a symmetric multiprocessing system, Linux treats all cores as an equal which causes a lot of problems
- By contrast, GenerOS partitions processing cores into application core, kernel core and interrupt core
 - All of applications run on application core
 - Their system calls are executed by kernel core
 - Interrupts are all bound to interrupt core

Architecture

- Most of cores are used by applications
- A limited number of cores are used by kernel service
 - File System
 - Process
- Few number of cores are used to handle interrupt

	Motivation
	Architecture of GenerOS
3	Implementation of GenerOS
	Evaluation of GenerOS vs Linux
	Conclusion

Implementation

- GenerOS is developed based on Linux-2.6.25 @ x86_64 architecture
- In system call level, several kernel servers are developed
 - File system server (98 system calls)
 - sys_open / sys_close / sys_read / sys_write
 - Network server (15 system calls)
 - sys_socket / sys_connect
 - Signal server (12 system calls)
 - sys_rt_sigaction
 - IPC server (12 system calls)
 - sys_msgget
 - Process server (10 system calls)
 - sys_fork
 - Others (141 system calls)
 - sys_brk

Implementation ---- GenerOS Processing Flow Chart


```
while(generos_request_queue_is_not_empty(&process_queue)){
req = generos_pick_request(&process_queue);
switch(req->type){
  case GETPID:
    req->retvalue = sys getpid();
    break;
  .....
wake_up_process(req->task);
```

Implementation ---- Runtime at Application Core

 It replaces the system call table of Linux const sys_call_ptr_t syscall_table [__NR_syscall_max+1] = { [__NR_read] = &generos_sys_read, [__NR_write] = &generos_sys_write, [__NR_timerfd_gettime] = &generos_sys_timerfd_gettime; };

- The left side keeps the same meaning with Linux which makes GenerOS compatible with Linux
- The right side uses self defined function which will find a kernel core to handle its system call

Implementation ---- Kernel Core

- Two queues
 - Request queue
 - Receive system call requests from application core
 - Wait queue
 - Store the being handled system calls which are waiting for something
- One schedule method
 - Slim Schedule
 - Schedule system calls in this kernel core with almost zero overhead

Implementation ---- Binding Interrupt Handler

- Interrupt core is used to deal with most of interrupts from network interface, disk, or local timer
- In such way, both of application core and kernel core will have a clean execution environment
- GenerOS uses the method in Linux to bind interrupt handler to some processing core

	Motivation
	Architecture of GenerOS
	Implementation of GenerOS
4	Evaluation of GenerOS vs Linux
	Conclusion

Evaluation ---- Platform

Evaluation ---- Lock contention

Evaluation ---- Cache Pollution

■ linux ■ generos

Evaluation ---- Single System Call

Evaluation ---- Single System Call

Evaluation ---- TPC-H 1GB Power

Evaluation ---- TPC-H 1GB Power

Table 1: GenerOS Configuration

	application	kernel	interrupt
	core	core	core
g-8000	$0 \sim 14$	15	15
g-8800	0~10, 12~14	11, 15	11, 15
g-8880	0~6, 8~10,12~14	7, 11, 15	7, 11, 15
g-8888	0~2, 4~6, 8~10, 12~14	3, 7, 11, 15	3, 7, 11, 15
g-c000	0~13	14, 15	14, 15
g-e000	0~12	13, 14, 15	13, 14, 15
g-f000	0~11	12, 13, 14, 15	12, 13, 14, 15

Evaluation ---- Httperf

Requests Per Second

	Motivation
	Architecture of GenerOS
	Implementation of GenerOS
	Evaluation of GenerOS vs Linux
5	Conclusion

Conclusion

- GenerOS is an asymmetric kernel which is designed to deal with the problems faced in traditional symmetric kernel
- Being compatible with Linux, GenerOS does not need to modify, recompile, or relink applications, or libraries
- Experiments with two typical workloads on 16-core AMD machine show that GenerOS behaves better than original Linux kernel when there are more processing cores
 - ▶ 19.6% for TPC-H using oracle database management system
 - ▶ 42.8% for httperf using apache web server

Thank you very much!

Any question ?

Please contact the author yuanbor@ncic.ac.cn