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Motivation

Symmetric multithread operating system such as Linux 
suffers from lock contention and cache pollution

Lock contention
 As more cores are packaged into a single chip, there are two many 

cores in a system
 Each core has the ability to trap into kernel
 Too many procedures in kernel -> serious lock contention

Cache pollution
 Applications and kernel run on the same core
 Applications may kick kernel’s cache line out of cache
 And vice versa
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Motivation 
---- Lock Contention @ Linux

Contention Probability = contentions / acquisitions
 acquisitions: times acquiring lock
 contentions: times encountering contention

Contention Efficiency = hold time / (hold time + wait time)
 hold time: time in critical region
 wait time: time waiting for entering critical region
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Motivation 
---- Lock Contention @ Linux
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Motivation 
---- Cache Pollution @ Linux
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Motivation 
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Lock Contention Solution

GenerOSMore Cores
More Contentions

Decrease Cores 
in Kernel Mode

Cache Pollution Solution

Applications
Run Together 
with OS

Separate Kernel 
and Applications
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Architecture

In a symmetric multiprocessing system, Linux treats all cores 
as an equal which causes a lot of problems

By contrast, GenerOS partitions processing cores into 
application core, kernel core and interrupt core
 All of applications run on application core
 Their system calls are executed by kernel core
 Interrupts are all bound to interrupt core
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Architecture

Most of cores are used by applications

A limited number of cores are used by kernel service
 File System
 Process

Few number of cores are used to handle interrupt
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Implementation

GenerOS is developed based on Linux-2.6.25 @ x86_64 architecture
In system call level, several kernel servers are developed
 File system server (98 system calls)

sys_open / sys_close / sys_read / sys_write
 Network server (15 system calls)

sys_socket / sys_connect
 Signal server (12 system calls)

sys_rt_sigaction
 IPC server (12 system calls)

sys_msgget
 Process server (10 system calls)

sys_fork
 Others (141 system calls)

sys_brk
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Implementation
---- GenerOS Processing Flow Chart
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int main(void)
{
    pid_t getpid();

    return 0;
}

Application @ 
Application core

pid_t generos_sys_getpid(void)
{
    req = generos_get_request();
    generos_init_request(req);
    generos_send_to_kernel(req);
    sleep();
    return pid;
}

Runtime @ Application core

while(generos_request_queue_is_not_empty(&process_queue)){
    req = generos_pick_request(&process_queue);
    switch(req->type){
        case GETPID:
            req->retvalue = sys_getpid();
            break;
        ……
    }
    wake_up_process(req->task);
}

Process Server @ Kernel core



Implementation
---- Runtime at Application Core
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It replaces the system call table of Linux
const sys_call_ptr_t syscall_table [__NR_syscall_max+1]  = { 

[__NR_read] = &generos_sys_read, 

[__NR_write] = &generos_sys_write, 

…… 

[__NR_timerfd_gettime] = &generos_sys_timerfd_gettime; 
}; 

The left side keeps the same meaning with Linux which 
makes GenerOS compatible with Linux

The right side uses self defined function which will find a 
kernel core to handle its system call



Implementation
---- Kernel Core
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Two queues
 Request queue

Receive system call requests from application core
 Wait queue

Store the being handled system calls which are waiting for 
something

One schedule method
 Slim Schedule

Schedule system calls in this kernel core with almost zero overhead



Implementation
---- Binding Interrupt Handler
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Interrupt core is used to deal with most of interrupts from 
network interface, disk, or local timer

In such way, both of application core and kernel core will 
have a clean execution environment

GenerOS uses the method in Linux to bind interrupt handler 
to some processing core
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Evaluation
---- Platform

GenerOS  |  18



Evaluation
---- Lock contention
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Evaluation
---- Cache Pollution
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Evaluation
---- Single System Call

GenerOS  |  21



Evaluation
---- Single System Call
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Evaluation
---- TPC-H 1GB Power
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Evaluation
---- TPC-H 1GB Power

GenerOS  |  24



Evaluation
---- Httperf
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Conclusion

GenerOS is an asymmetric kernel which is designed to deal 
with the problems faced in traditional symmetric kernel

Being compatible with Linux, GenerOS does not need to 
modify, recompile, or relink applications, or libraries

Experiments with two typical workloads on 16-core AMD 
machine show that GenerOS behaves better than original 
Linux kernel when there are more processing cores
 19.6% for TPC-H using oracle database management system
 42.8% for httperf using apache web server
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Thank you very much!

Any question ?

Please contact the author

yuanbor@ncic.ac.cn
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